Chat.ts overview
The Chat
module provides a stateful conversation interface for AI language models.
This module enables persistent chat sessions that maintain conversation history, support tool calling, and offer both streaming and non-streaming text generation. It integrates seamlessly with the Effect AI ecosystem, providing type-safe conversational AI capabilities.
Example
import { Chat, LanguageModel } from "@effect/ai"
import { Effect, Layer } from "effect"
// Create a new chat session
const program = Effect.gen(function* () {
const chat = yield* Chat.empty
// Send a message and get response
const response = yield* chat.generateText({
prompt: "Hello! What can you help me with?"
})
console.log(response.content)
return response
})
Example
import { Chat, LanguageModel } from "@effect/ai"
import { Effect, Stream } from "effect"
// Streaming chat with tool support
const streamingChat = Effect.gen(function* () {
const chat = yield* Chat.empty
yield* chat
.streamText({
prompt: "Generate a creative story"
})
.pipe(Stream.runForEach((part) => Effect.sync(() => console.log(part))))
})
Since v1.0.0
Exports Grouped by Category
Constructors
empty
Creates a new Chat service with empty conversation history.
This is the most common way to start a fresh chat session without any initial context or system prompts.
Example
import { Chat } from "@effect/ai"
import { Effect } from "effect"
const freshChat = Effect.gen(function* () {
const chat = yield* Chat.empty
const response = yield* chat.generateText({
prompt: "Hello! Can you introduce yourself?"
})
console.log(response.content)
return chat
})
Signature
declare const empty: Effect.Effect<Service, never, LanguageModel.LanguageModel>
Since v1.0.0
fromExport
Creates a Chat service from previously exported chat data.
Restores a chat session from structured data that was previously exported using the export
method. Useful for persisting and restoring conversation state.
Example
import { Chat } from "@effect/ai"
import { Effect } from "effect"
declare const loadFromDatabase: (sessionId: string) => Effect.Effect<unknown>
const restoreChat = Effect.gen(function* () {
// Assume we have previously exported data
const savedData = yield* loadFromDatabase("chat-session-123")
const restoredChat = yield* Chat.fromExport(savedData)
// Continue the conversation from where it left off
const response = yield* restoredChat.generateText({
prompt: "Let's continue our discussion"
})
}).pipe(
Effect.catchTag("ParseError", (error) => {
console.log("Failed to restore chat:", error.message)
return Effect.void
})
)
Signature
declare const fromExport: (data: unknown) => Effect.Effect<Service, ParseError, LanguageModel.LanguageModel>
Since v1.0.0
fromJson
Creates a Chat service from previously exported JSON chat data.
Restores a chat session from JSON string that was previously exported using the exportJson
method. This is the most convenient way to persist and restore chat sessions to/from storage systems.
Example
import { Chat } from "@effect/ai"
import { Effect } from "effect"
const restoreFromJson = Effect.gen(function* () {
// Load JSON from localStorage or file system
const jsonData = localStorage.getItem("my-chat-backup")
if (!jsonData) return yield* Chat.empty
const restoredChat = yield* Chat.fromJson(jsonData)
// Chat history is now restored
const response = yield* restoredChat.generateText({
prompt: "What were we talking about?"
})
return response
}).pipe(
Effect.catchTag("ParseError", (error) => {
console.log("Invalid JSON format:", error.message)
return Chat.empty // Fallback to empty chat
})
)
Signature
declare const fromJson: (data: string) => Effect.Effect<Service, ParseError, LanguageModel.LanguageModel>
Since v1.0.0
fromPrompt
Creates a new Chat service from an initial prompt.
This is the primary constructor for creating chat instances. It initializes a new conversation with the provided prompt as the starting context.
Example
import { Chat, Prompt } from "@effect/ai"
import { Effect } from "effect"
const chatWithSystemPrompt = Effect.gen(function* () {
const chat = yield* Chat.fromPrompt([
{
role: "system",
content: "You are a helpful assistant specialized in mathematics."
}
])
const response = yield* chat.generateText({
prompt: "What is 2+2?"
})
return response.content
})
Example
import { Chat, Prompt } from "@effect/ai"
import { Effect } from "effect"
// Initialize with conversation history
const existingChat = Effect.gen(function* () {
const chat = yield* Chat.fromPrompt([
{ role: "user", content: [{ type: "text", text: "What's the weather like?" }] },
{ role: "assistant", content: [{ type: "text", text: "I don't have access to weather data." }] },
{ role: "user", content: [{ type: "text", text: "Can you help me with coding?" }] }
])
const response = yield* chat.generateText({
prompt: "I need help with TypeScript"
})
return response
})
Signature
declare const fromPrompt: (prompt: Prompt.RawInput) => Effect.Effect<Service, never, LanguageModel.LanguageModel>
Since v1.0.0
Context
Chat (class)
The Chat
service tag for dependency injection.
This tag provides access to chat functionality throughout your application, enabling persistent conversational AI interactions with full context management.
Example
import { Chat } from "@effect/ai"
import { Effect } from "effect"
const useChat = Effect.gen(function* () {
const chat = yield* Chat
const response = yield* chat.generateText({
prompt: "Explain quantum computing in simple terms"
})
return response.content
})
Signature
declare class Chat
Since v1.0.0
Models
Service (interface)
Represents the interface that the Chat
service provides.
Signature
export interface Service {
/**
* Reference to the chat history.
*
* Provides direct access to the conversation history for advanced use cases
* like custom history manipulation or inspection.
*
* @example
* ```ts
* import { Chat } from "@effect/ai"
* import { Effect, Ref } from "effect"
*
* const inspectHistory = Effect.gen(function* () {
* const chat = yield* Chat.empty
* const currentHistory = yield* Ref.get(chat.history)
* console.log("Current conversation:", currentHistory)
* return currentHistory
* })
* ```
*/
readonly history: Ref.Ref<Prompt.Prompt>
/**
* Exports the chat history into a structured format.
*
* Returns the complete conversation history as a structured object
* that can be stored, transmitted, or processed by other systems.
*
* @example
* ```ts
* import { Chat } from "@effect/ai"
* import { Effect } from "effect"
*
* const saveChat = Effect.gen(function* () {
* const chat = yield* Chat.empty
* yield* chat.generateText({ prompt: "Hello!" })
*
* const exportedData = yield* chat.export
*
* // Save to database or file system
* return exportedData
* })
* ```
*/
readonly export: Effect.Effect<unknown>
/**
* Exports the chat history as a JSON string.
*
* Provides a convenient way to serialize the entire conversation
* for storage or transmission in JSON format.
*
* @example
* ```ts
* import { Chat } from "@effect/ai"
* import { Effect } from "effect"
*
* const backupChat = Effect.gen(function* () {
* const chat = yield* Chat.empty
* yield* chat.generateText({ prompt: "Explain photosynthesis" })
*
* const jsonBackup = yield* chat.exportJson
*
* yield* Effect.sync(() =>
* localStorage.setItem("chat-backup", jsonBackup)
* )
*
* return jsonBackup
* })
* ```
*/
readonly exportJson: Effect.Effect<string>
/**
* Generate text using a language model for the specified prompt.
*
* If a toolkit is specified, the language model will have access to tools
* for function calling and enhanced capabilities. Both input and output
* messages are automatically added to the chat history.
*
* @example
* ```ts
* import { Chat } from "@effect/ai"
* import { Effect } from "effect"
*
* const chatWithAI = Effect.gen(function* () {
* const chat = yield* Chat.empty
*
* const response1 = yield* chat.generateText({
* prompt: "What is the capital of France?"
* })
*
* const response2 = yield* chat.generateText({
* prompt: "What's the population of that city?",
* })
*
* return [response1.content, response2.content]
* })
* ```
*/
readonly generateText: <
Options extends NoExcessProperties<LanguageModel.GenerateTextOptions<any>, Options>,
Tools extends Record<string, Tool.Any> = {}
>(
options: Options & LanguageModel.GenerateTextOptions<Tools>
) => Effect.Effect<
LanguageModel.GenerateTextResponse<Tools>,
LanguageModel.ExtractError<Options>,
LanguageModel.ExtractContext<Options>
>
/**
* Generate text using a language model with streaming output.
*
* Returns a stream of response parts that are emitted as soon as they're
* available from the model. Supports tool calling and maintains chat history.
*
* @example
* ```ts
* import { Chat } from "@effect/ai"
* import { Effect, Stream, Console } from "effect"
*
* const streamingChat = Effect.gen(function* () {
* const chat = yield* Chat.empty
*
* const stream = yield* chat.streamText({
* prompt: "Write a short story about space exploration"
* })
*
* yield* Stream.runForEach(stream, (part) =>
* part.type === "text-delta"
* ? Effect.sync(() => process.stdout.write(part.delta))
* : Effect.void
* )
* })
* ```
*/
readonly streamText: <
Options extends NoExcessProperties<LanguageModel.GenerateTextOptions<any>, Options>,
Tools extends Record<string, Tool.Any> = {}
>(
options: Options & LanguageModel.GenerateTextOptions<Tools>
) => Stream.Stream<
Response.StreamPart<Tools>,
LanguageModel.ExtractError<Options>,
LanguageModel.ExtractContext<Options>
>
/**
* Generate a structured object using a language model and schema.
*
* Forces the model to return data that conforms to the specified schema,
* enabling structured data extraction and type-safe responses. The
* conversation history is maintained across calls.
*
* @example
* ```ts
* import { Chat } from "@effect/ai"
* import { Effect, Schema } from "effect"
*
* const ContactSchema = Schema.Struct({
* name: Schema.String,
* email: Schema.String,
* phone: Schema.optional(Schema.String)
* })
*
* const extractContact = Effect.gen(function* () {
* const chat = yield* Chat.empty
*
* const contact = yield* chat.generateObject({
* prompt: "Extract contact info: John Doe, john@example.com, 555-1234",
* schema: ContactSchema
* })
*
* console.log(contact.object)
* // { name: "John Doe", email: "john@example.com", phone: "555-1234" }
*
* return contact.object
* })
* ```
*/
readonly generateObject: <
A,
I extends Record<string, unknown>,
R,
Options extends NoExcessProperties<LanguageModel.GenerateObjectOptions<any, A, I, R>, Options>,
Tools extends Record<string, Tool.Any> = {}
>(
options: Options & LanguageModel.GenerateObjectOptions<Tools, A, I, R>
) => Effect.Effect<
LanguageModel.GenerateObjectResponse<Tools, A>,
LanguageModel.ExtractError<Options>,
LanguageModel.LanguageModel | R | LanguageModel.ExtractContext<Options>
>
}
Since v1.0.0